

Calculation Policy (with guidance)

2014-15

The following document is intended to prescribe the pathway for development of written calculation throughout Meltham CE Junior School - it may at times however, cross into the use of mental calculation

Teachers may revert to methods used in previous years in order to provide for learners who are not progressing in line with their contemporaries, but progress forward into calculation strategies intended for subsequent years is not permitted without discussion with the Maths Coordinator or a member of Senior Leadership.

Whole class teaching must always follow the written calculation policy for any given year group.

This document is intended to give our learners the maximum possible exposure to each step along the pathway in order that standards will improve in the long-term.

The complexity of a problem is determined by the problem itself, not by the written strategy that culminates in its resolution. As teachers, we can extend our children's learning and accelerate their progress whilst at the same time entrenching the written calculation methods.

Display of Written Calculation methods in all four operations.

Each classroom should display the written calculation strategy for that year as part of the permanent display. The following colour coordination should be adhered to in order to provide consistency across school:

Multiplication displayed on a RED background Division displayed on a GREEN background Addition displayed on a YELLOW background Subtraction displayed on a BLUE background

Exemplar progression in the written calculation of ADDITION

Year	Calculation method and examples	Guidance
R-I	Counting on using song, visual aids, dominoes, counters, number lines and 100 squares, finger counting. Images and models and a pictorial representation of the mechanics of addition. Drawing of pictures or objects accompanied by recording pictorially: Teacher: I buy 3 balls and my friend gives me two more! Now how many do I have altogether? This may simultaneously be recorded as $3+2=5$ as the language of addition is introduced. Children should also use marks or pictures on paper or on white boards as a calculation strategy. Teacher: If 6 people are in the role play area and 5 more want to join their game, how many will be there altogether? This may simultaneously be recorded as $6+5$ as the language of addition is introduced. There are myriad other methods to display working recorded and supported - this document is not intended to make them obsolete.	Use of jottings and marks diagrams and pictures - to solve problems; moving then to the use of number lines. Encourage children to put the larger number first. Know that addition can be done in any order.

I-2	Partitioning using jottings Use of vertical or horizontal layout to set out mental problems - working out should not be encouraged by mentally adding each line; concretes (beads, blocks, Numicon, Diennes, number lines) should be the tools used to find the answer. $4+3=\quad 7+3+4=\quad 10+5+2=$ Use of the number line and apparatus (concretes) - for example, bridging through 10 . \square $=6+5$ becomes $I I=6+5$ $27+8=35$ CHILDREN'S STEPS WILL OFTEN BE INDIVIDUAL TO THEIR OWN LEVEL OF DEVELOPMENT THEIR STEPS MAY BE IN ONES FROM 27 TO 45.	The children should use these two methods only until year 3 and CONCRETES, models and images SHOULD ALWAYS BE USED TO SUPPORT THIS - THERE SHOULD BE NO MOVE TO ABSTRACT YET. This will continually reinforce place value and also entrench the methods, creating a fallback strategy for test situations and for dealing with two-part problems in which the addition may not be the main focus of teaching and learning In addition to these primary methods, others may be delivered as part the new National Curriculum when considering mental calculation or use of known facts. However, these methods should be revisited time and time again. When asked, "How do we calculate the following addition problem?" children should automatically be able to respond in either or both of the two written calculation methods for years R-3
3 \& 4	USE OF THE NUMBER LINE WILL CONTINUE THROUGHOUGHT YEAR 3 \& 4 AS PART OF THE DEVELOPMENT OF A RAFT OF STRATEGIES CHILDREN CAN USE Introduction of vertical layout using partitioning, with the support of concretes (Diennes blocks) and possible ICT representation, will map each step of the instruction of this new method.	Concretes should be used at all new introductory stages

| I24.6
 95.3 | improbability of their answer.
 It is often simply accepted. |
| :--- | :--- | :--- |
| "Children, what is 0.6 added to 0.3? What is 5 and 4?
 What is the sum of 90 and 20? Where should we
 carry our one hundred?" | |

Exemplar progression in the written calculation of Subtraction

Year	Calculation method and examples	Guidance
R-I	Pictorial representation of the mechanics of subtraction as taking away and of finding the difference by comparing, followed by counting back using number lines, IOO squares or mentally. The relationship between taking away and finding the difference should be recognised as important. $9-5=4$ Or $7-5=\mathbf{2}$ Working towards using...	Concretes Pictures Jottings Number lines Physically jumping Solve problems Lots of practise with manipulatives taking away and looking at the difference between amounts Children should spend time physically DOING subtraction - jumping backwards and forwards in hoops/on giant number lines or squares and LOOKING at difference between amounts in towers, piles, sets etc
Y2	Number line method $\begin{array}{ll} 37-1 I=26 \\ & -1 \\ & \text { Imagine } 2 \text { arrows here counting back! } \\ \hline 26 & 27 \\ \hline 27 \end{array}$	Children should spend time examining number lines. Choose 2 random numbers - is it easier to count forwards or backwards? A mixture of counting backwards and counting on from the lowest to the highest in conjunction with the learning that

Y3

Y5-6	In Year 5/6, although vertical subtraction may be taking place, the use of the number line could be employed to teach finding the difference between numbers including 2 decimal places. It is also a useful tool when continuing calculating time problems: $9.2-3.45=5.75$	
This	Columnar Subtraction method of written calculation Will not be taught befo Year 3 alongside the number line method	Summer 2 in
$\begin{gathered} \quad 3 \\ \text { (END } \\ \text { OF) } \end{gathered}$	Children should only be instructed in the first stage of vertical subtraction during Summer Term 2. If children are considered by their teacher not to be ready, then it should be omitted and it is advised that instruction take place during guided groups. $\begin{gathered} 56-23=33 \\ 50 \\ -\quad 20 \end{gathered}$ $303=33$	MUST USE MANIPULATIVES FIRST Questions recorded horizontally and vertically IN SUMMER 2 ONLY STEP ONE OF THE DECOMPOSITION PATHWAY ONLY (2-DIGIT NUMBERS AND NO EXCHANGING)

Y5	Leading to: $473-385=88$
Y6	Reinforcing the method, children should extend into 4 digit numbers and beyond. Use the method as part of the application of maths, and extend by incorporating decimals. In addition, extend into the resolution of money problems using 2 decimal places in tandem with the aforementioned number line. The use of previous methods should not be ignored to reinforce the learning of children for whom decomposition in subtraction remains problematic. Strong practice will draw on previous methods when necessary.

